Status and Plans for Future Generations of Ground-based Interferometric Gravitational-Wave Antennas

4th international LISA Symposium
July 22, 2002
@ Penn State University

Seiji Kawamura
National Astronomical Observatory of Japan
Contents

1. Current Detectors to Future Generations
2. Advanced Technology
 (Seismic Noise and Thermal Noise)
1. Status and Future Plan
2. Conclusions
Interferometric GW Detector

LIGO

GEO

VIRGO

EURO

Upgrade

Advanced LIGO

LIGO

AIGO

TAMA

LCGT
Evolution of Interferometric GW Detectors

Current Generation
- Seismic Noise
- Shot Noise
- Thermal Noise

3rd Generation
- Radiation Pressure Noise
- Shot Noise

5th Generation
- Beyond SQL

2nd Generation
- Seismic Noise
- Thermal Noise
- Shot Noise

4th Generation
- Standard Quantum Limit
Significance of Seismic Isolation

Ground

Isolation System

Mirror

Large Motion

Small Motion

Frequency [Hz]

Displacement

0.1 1 10 100

Improve control noise, lock acquisition, and lock stability

Improve seismic noise directly

Ground

Mirror
Examples of Control Noise

Displacement noise level of TAMA300 (June 2, 2001)

- Seismic noise
- Alignment noise
- L-feedback noise
- Detector noise
- Michelson noise
- Frequency noise
- Intensity noise
- L-Filter noise

Control System

Loop Gain

Frequency

More attenuation

Control noise imposed

Control Force (Length/Alignment)

Mirror
More Isolation

More stages

Isolation System

Ground

Mirror

Lower resonant frequencies

Potential Energy

Original

Resultant

Anti-spring

Displacement
Super-attenuator (VIRGO)

Inverted pendulum

Magnetic anti-spring
Performance of Super-attenuator

- Recycled short-Michelson locked
- 10^{-11} m/Hz$^{1/2}$ at 2Hz
SAS
(LIGO-TAMA Collaboration)

- 3m FP cavity locked (Takamori et al.)
- To be installed in TAMA in 2004

Geometrical anti-spring
(DeSalvo et al.)
Multiple Pendulum

- Triple Pendulum used for GEO
- Quadruple pendulum developed for LIGO2
Underground Site

Mitaka Site (Ground-based)

Kamioka Site (Underground)

Kamioka

220km

Tokyo (NAOJ)
LISM (20m Prototype in Kamioka) and TAMA300

<table>
<thead>
<tr>
<th></th>
<th>TAMA300</th>
<th>LISM (Sato)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Continuous Locking</td>
<td>24 hours (summer 2001)</td>
<td>170 hours (Spring 2001)</td>
</tr>
<tr>
<td>Duty Cycle</td>
<td>86% (for the 2001 summer run)</td>
<td>99.8% (for the last week of 2001 summer run)</td>
</tr>
</tbody>
</table>
Thermal-related Noise

Solutions:
- Low Thermal expansion

Thermoelastic noise by Thermodinamic fluctuations
(Braginsky, et al.)

Pendulum thermal noise

Solutions:
- Low-loss material
- Low-loss fabrication
- Cryogenic temperature

Thermoelastic noise by Photothermal fluctuations
(Braginsky, et al.)

Internal mode thermal noise
Monolithic Suspension

Low pendulum thermal noise

- Weld and Silicate bonding used for GEO
 - Low loss in fiber itself
 - Low loss at the release point
Sapphire at Cryogenic Temperature

- **kT-energy**: low
- **Quality factor**: high (Uchiyama, et al.)
- **Thermo-elastic noise**: low (Cerdonio, et al.)
 - Thermal expansion rate: low
- **Thermal lensing**: negligible (Tomaru, et al.)
 - Thermal conductivity: high (20k-30k)
 - dn/dT: small
Issues on Cryogenic Technologies

- Seismic Isolation compatible with cryogenic
- Contamination of mirrors (Miyoki, et al.)
- Required cooling time
- Heat link
- Reduction of power dissipation
 - Improve absorption loss
 - Resonant sideband extraction
Resonant Sideband Extraction

Lower power at BS and front mirrors
⇒ Less heat produced

PRFPMI
- High power recycling gain
- Low finesse cavity

RSE
- Low power recycling gain
- High finesse cavity

Signal Extraction Mirror

Detuning possible by shifting SEM
Features of Advanced LIGO

- Reasonable and significant improvement from Initial LIGO on all the aspects
- A large number of scientists working on R&D
- Collaboration with GEO, VIRGO, ACIGA, TAMA
- Most matured among all the advanced detectors
Current Status and Plan of LIGO

- Intensive R&D going on
- Construction funding proposal late 2002
- Could be funded by early 2005
- Installation of new detectors starting in as early as 2006
Features of LCGT

- Cryogenic
- To be located in the Kamioka mine
- Arm length: 3km
- SAS (DeSalvo)
- RSE (Mizuno)
- Suspension-point interferometer (Drever)?
Suspension Point Interferometer

- Reduce vibration caused by the heat link; verified by experiment (Aso, et al.)
- Possibility of implementing low-frequency (lower cavity) and high-frequency (higher cavity) interferometers (Aso)
Aimed Sensitivity of LCGT

![Graph showing the noise budget of LCGT with different noise types including shot noise, radiation pressure noise, thermal noise, and seismic noise. The graph displays the sensitivity versus frequency, with a log-log scale.]
Current Status and Plan of LCGT

- Four-year budget approved for R&D (and observation and modification of TAMA)
- Various R&Ds going on
- Design efforts going on
- Aiming at obtaining the budget in 2005
Test of Technologies for LCGT

- SAS – @ TAMA (with LIGO)
- RSE – @ 40m, Caltech (with LIGO and GEO)
- High Power Laser - @ TAMA? (with ACIGA)
- Cryogenic technology – @ CLIO
CLIO - Prototype for LCGT

100m Cryogenic prototype in Kamioka mine
- Construction to be started very soon
AIGO

- Currently 80m testbed for high power (Collaboration with LIGO) and for advanced suspension with Euler spring and Nb flexures
- Eventually extended to a km-class advanced detector
Upgrade of GEO

- All reflected configuration with Silicon optics (Low-loss diffractive structure, low mechanical loss: to be investigated very soon)
- Initially cooled to 120k? (No thermo-elastic noise because of zero expansion coefficient)
- high-power YAG lasers (200 W)
- Non-classical light sources
- Upgrade takes place in 2006-9
EURO
(European Future Detector)

• Conceptual design being/will be discussed including the following possibilities:
 - Cryogenic at 4K?
 - Underground?
 - SQL limited sensitivity for 1 ton Silicon?
• Input from the results of the current-generation and the 2nd generation of detectors
• Starting not before 2008?
DECIGO
(Deci-hertz Interferometer Gravitational Wave Observatory)

- Candidate for Japanese space antenna project with shorter arm length
- One of the scientific objectives: measure the acceleration of the expansion of the Universe (Seto, et al. PRL)
- DECIGO-WG convened in 2002; currently 80 members

![Graph showing sensitivity comparison between DECIGO, LISA, and Terrestrial Detectors.]

<table>
<thead>
<tr>
<th>Frequency [Hz]</th>
<th>Strain [Hz]</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-24}</td>
<td>10^{-22}</td>
</tr>
<tr>
<td>10^{-20}</td>
<td>10^{-18}</td>
</tr>
<tr>
<td>10^{-16}</td>
<td>10^{-14}</td>
</tr>
<tr>
<td>10^{-12}</td>
<td>10^{-10}</td>
</tr>
<tr>
<td>10^{-8}</td>
<td>10^{-6}</td>
</tr>
<tr>
<td>10^{-4}</td>
<td>10^{-2}</td>
</tr>
</tbody>
</table>

![Diagram illustrating the detection of gravitational waves with DECIGO.]

- Expansion + Acceleration?
- NS-NS (z≈1)
- GW
- Output

Template (No Acceleration)

Real Signal?

Time

Phase Delay≈ 1 sec (10 years)
Conclusions

- Various levels of advanced detectors being developed/studied/considered
- Various kinds of new technologies to reduce noise already developed/being/will be developed
- Various levels of international collaboration going on to aim at international detector network
- These efforts will bring us to the establishment of GW astronomy in the future