Data analysis for science

Lee Samuel Finn
Center for Gravitational Wave Physics
Overview

• “Data analysis” goals

• Distinguishing signal from noise: Examples

• What this means for you
Data Analysis v. Source Simulation

- **Source Simulation**
 - Goal: *Identify source science* impressed on gravitational wave signal
 - Important question: how is source science encoded in radiation?

- **Data Analysis**
 - Goal:
 - Distinguish between signal and noise
 - Discriminate to identify source science in signal
 - E.g., source parameters like ns/bh masses, or spins, population statistics, etc.
 - Interpretation: place observations in (astro)physical context
 - Important question: how to *maximize contrast* between signal, noise?
What distinguishes?

- Measure of distinction: likelihood or sampling distribution
 - P(d | \(\Theta\), I) : prob of observing d given \(\Theta\), I
 - d – quantity (not necessarily \(h[t_k]\)) calculated from measurement at detector
 - \(\Theta\) - all the parameters that distinguish among signals
 - Amplitude, population, etc.
 - I - everything relevant about detector and noise

- What is d?
 - Depends on noise, sought-for signal
 - We’ll return to this point!

- P(d | 0, I)
 - Probability that observation is of noise alone (no signal)

- P(d | \(\Theta\), I)
 - Probability observation is of noise + signal \(\Theta\)

- Likelihood of d: “odds” signal v. noise:
 - \(\Lambda = P(d | \Theta, I) / P(d | 0, I)\)

Goal: Make probabilities P(d | \(\Theta\), I), P(d | 0, I) as different as possible!
The Detection Game

• **The Game:**
 – Observe $h[t_k]$
 – Calculate d
 – Calculate $P(d | \Theta, I)$
 – If $P(d | \Theta, I) < P_0$, buy tux, tickets to Stockholm

• **Choice P_0:** false alarms, false dismissal
 – False alarm prob: frequency with which noise alone (no signal) would give d such that $P(d | \Theta, I) < P_0$
 – False dismissal prob: frequency with which noise + signal Θ would give d such that $P(d | \Theta, I) > P_0$
 – Efficiency $:= 1 – (\text{false dismissal prob})$

• **Note:** the more different $P(d | \Theta, I), P(d | \Theta, I)$, the smaller the false dismissal for a given false alarm
Expressing the contrast: False alarm v. efficiency

- Guessing: pick a random number between 1 and 100
 - If less than N+1 then say detected
- False alarm probability?
 - N/100
- Efficiency?
 - N/100
- Close to diagonal is close to random guessing
- Better tests have greater lift off diagonal
 - High efficiency for low false alarm probability
Clearing the Clutter

• Goal: make contrast $P(d | \Theta, I) / P(d | 0, I)$ large
 – How? Can’t choose, change signal, noise
 – Only possibility: choose d!
 – Choice of d based on signal characteristics and their uncertainty (in nature or knowledge)

• Examples:
 – Stochastic gravitational wave signal
 – Periodic signals
 – Gravitational waves from γ-ray bursts
 – Bursts: things that go “bump” in the night
Stochastic gravitational wave signal

• “Signal” is noise
 – How do we distinguish gw contribution to total “noise”?

• What’s distinguishes signal, instrumental contributions?
 – Physically distinct detectors respond coherently to gravitational waves

• Quantity that distinguishes
 – Cross correlation: \(d = \iint dt_1 dt_2 h_1(t) h_2(f) Q(t_1 - t_2) \)
 – Choose kernel Q to extremize contrast in d between signal present, absent cases

• Key point: look for, choose measure that draws the greatest contrast between signal, noise
(nearly) Periodic Signals

- **Signal**
 - $s(t) = A \sin [\Phi(t) + \phi_0]$
 - Know $\Phi(t)$ accurately, unknown ϕ_0, A

- **What distinguishes?**
 - Noise not periodic with known phase
 - Signal has no power except at frequencies near $d\Phi/dt$
 - Phase ϕ_0 not important

- **Identify a quantity that large for signal, small for noise:**
 \[\rho^2 = x^2 + y^2 \]
 \[x = \frac{1}{T} \int_0^T dt \, h(t) \cos \Phi(t) \]
 \[y = \frac{1}{T} \int_0^T dt \, h(t) \sin \Phi(t) \]

Key point: phase must be known s.t. $\Delta \Phi \ll \pi$ for all t
The γ-ray Burst Story

Key Facts:
- Multiple, indistinguishable triggers
- Rapidly rotating (Jc/GM2~1) BH
- γ-ray production far from BH
- Sources likely too distant (z~1) to detect individuals
- Gravitational wave strength, time dependence unknown

Hypernovae; collapsars; NS/BH, He/BH, WD/BH mergers; AIC; …

Black hole + debris torus

Relativistic fireball

γ-rays generated by internal or external shocks
What science might we learn?

- Progenitor mass, angular momentum
 - Expect radiated power to peak at frequency related to black hole M, J
- Differentiate among progenitors
 - Radiation originating from stellar collapse, binary coalescence have different gw intensity, spectra
- Internal vs. external shocks
 - Elapsed time between gw, g-ray burst depends on whether shocks are internal or external
- Analysts goal: describe an analysis that brings science into contrast
 - Spectra, elapsed time between g, gw bursts

Hypernovae; collapsars; NS/BH, He/BH, WD/BH mergers; AIC; …

Relativistic fireball

Black hole + debris torus

γ-rays generated by internal or external shocks
The LIGO Lock-in

Incident waves give correlated detector output

Integrated cross-correlated detector output:

\[
\langle s_H, s_L \rangle \equiv \int_0^T dt dt' s_H(t_H - t) s_L(t_L - t') K(t - t')
\]

\[
x_{\text{off}} = \langle n_H, n_L \rangle
\]

\[
x_{\text{on}} \equiv \langle n_H + h_H, n_L + h_L \rangle
\]

\[
\equiv x_{\text{off}} + \langle h_H, n_L \rangle + \langle n_H, h_L \rangle + \langle h_H, h_L \rangle
\]

Collect catalog of \(<s,s>\)
associated, not associated
with GRBs,

Source population average

\[
x_{\text{off}} = \mu_{\text{off}}
\]

\[
x = x_{\text{off}} + \langle h_H, h_L \rangle
\]

Collect & compare on-burst, off-burst catalogs:
Are distributions different?

Incident waves give correlated detector output

\[h_{ij} \]

- Accuracy of estimated means increases the more samples are available
- Gather enough samples and any difference becomes distinguishable from zero

\[
\overline{x}_{\text{off}} = \mu_{\text{off}} \\
\overline{x}_{\text{on}} = \mu_{\text{off}} + \langle h_H, h_L \rangle
\]
Discovery: Things that go bump in the night

- How to discover?
- What distinguishes signal, noise?
 - Signal time-limited
 - Signal (s), noise (n) uncorrelated: \(<sn>=0\>
 - Important: \(<(n+s)^2>\) greater than \(<n^2>\>
- Analysis method: look for anomalies
 - Where is detector output unusual?
 - Where do noise statistics change?
Example: Power

- How does power in a frequency band evolve?
 - $|h(f)|^2$ measured over short intervals of time
- Spectrogram
 - Band-limited signals
 - Signals that exhibit interesting “time-frequency” behavior
- Refs.
 - Sylvestre. Phys Rev. in press. (gr-qc/0210043)
Example: Change-point analyses

- Look for places where statistics change
 - Statistics? Mean, variance
 - Needn’t assume any particular mean, variance: look for changes
- Refs.
 - Time series: Finn & Stuver in progress
What does this mean for you?

• **Source simulator’s job**
 – *Identify science* reflected in the gravitational waves
 • The science is the signal!
 – Find wave description draws the *science* into sharpest focus
 • Frequency, bandwidth, duration, polarization, …?
 – Connect the source to an astrophysical context
 • Amplitude, rate, space density, etc.
 – Don’t forget uncertainties!

• **The data analyst’s job**
 – Develop analyses that makes *science* stand-out
 • The science is the signal!
 – Provide astrophysical interpretation of observations